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1    Introduction 

The complexity of structures encountered in ATR signals require to develop 
adaptive low-level representations. Although these signals are entirely char- 
acterized by their decomposition in a basis, a basis is a minimal set of vectors 
that is not rich enough to represent efficiently all components. Some signal 
structures are diffused across many basis elements and are thus difficult to 
analyze from this expansion. For example, image variations corresponding to 
edges and textures are not efficiently represented by the same types of wave- 
forms. The same issue appears in sounds that includes transients that are 
well represented by short waveforms, and harmonics that are more efficiently 
decomposed over long waveforms with short frequency support. Instead of 
decomposing all signals over the same family of waveforms, we introduced an 
adaptive transforms choose the decomposition vectors depending upon the 
signal properties. These vectors are selected among a family of waveforms 
that is much larger than a basis, which is called a dictionary. 

In this study we have developed an algorithm called matching pursuit 
algorithm (section 2), which decomposes signals over dictionary vectors that 
are selected with a greedy strategy. Most of the signal energy can be ap- 
proximated with few dictionary vectors, which can be interpreted as essential 
signal features. The application of matching pursuit to sounds (section 3) and 
images (section 5) have been developed with dictionaries of time-frequency 
atoms and wavelets. The asymptotic properties of the pursuit have shown 
the existence of a chaotic attractor that we used for noise removal (section 
chaos). To isolate features whose support overlap, in collaboration with Alan 
Willsky group at MIT, we have developed a high resolution pursuit algorithm 
which can segment features closely spaced (section 7). 

The extraction of information from signals also requires to analyze struc- 
tures that are better modeled in a stochastic framework. For stochastic sig- 
nals, we are not interested by the exact behavior of a particular realization 
but we want to identify the underlined process. One or few realizations give 
very little information about the underlying process. We thus concentrate on 
second order moment properties. A new algorithm to estimate the covariance 
of non-stationary processes has been introduced in collaboration with Pfr. 
Papanicolaou. 



By iterating this decomposition up to the order m, we can decompose / into 
the telescoping sum 

m-l 

/=£ (Rnf-Rn+1f)+Rmf. (7) 
n=0 

Equation (5) yields 

m—1 

/= £ <Rnf,gln>gln + Rmf. (8) 
71=0 

Similarly, we write |/||2 as a telescoping sum 

m—1 

ll/ll2 = £ (l-R"/l2 - I*n+1/!2) + |JT/|2 (9) 
n=0 

which we combine with (6) to obtain an energy conservation equation 

m —1 

l/l2 = £l<*n/,^>l2 + l|/r/||2. .    (io) 
n=0 

A matching pursuit decompose any / into a sum of dictionary elements 
which are chosen to best match its residues. Although this decomposition 
is non-linear, we maintain an energy conservation as though it was a linear, 
orthogonal decomposition. An important issue was to understand the behav- 
ior of the residue Rmf when m increases. We proved [l] that the matching 
pursuit converges, even in infinite dimensional spaces. 

Theorem 1 Let f £ H. The residue Rmf defined by the induction equation 
(5) satisfies 

lim    |Äm/| = 0. (11) 

Hence 

and 

+oo 

/ = E <Rnf,9in>g<yn, (12) 
71=0 

+oo 

|/|2 = El<Än/,^>|2. (13) 
71=0 

When H is of finite dimension, ||i?m/|| decays exponentially to zero. 
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This theorem proves that any vector / is characterized by the double 
sequence (< Rnf,gln >,7n)nsNt which specifies the expansion coefficients 
and the index of each chosen vector within the dictionary. After m iterations, 
(8) shows that the approximation error is 

m-l 

Rmf = f-J2 <Rnf,9^>9-y„. (14) 
n=0 

The best approximation of / as a a linear expansion of {<?7n}o<n<m is the 
orthogonal projection of / on the space generated by this family of vectors. 
In general the vectors {gln}o<n<m are not orthogonal so the matching pursuit 
expansion is not equal to the orthogonal projection of/. An improved approx- 
imation was introduced in collaboration with Geoff Davis, by orthogonalizing 
the family {<77n}o<n<m with a Gram-Schmidt procedure and computing the 
orthogonal projection of / [4]. Such an orthogonal pursuit gives the better 
approximations at the cost of an increase computational complexity. 

3    Sound Pursuit 

To analyze the time and frequency localization properties of one-dimensional 
oscillatory signals such as speech, Zhifeng Zhang [1] used a large dictionary 
of time-frequency atoms. Our signal space is L2(R) and we construct such 
a dictionary by scaling, translating and modulating a single window function 
g(i) G L2(R). We suppose that g(t) is an even and real function of unit 
norm. For any scale s > 0, frequency modulation f and translation u, we 
denote 7 = (s, u, £) and define 

9l(t) =   *g(lZ±)e* (is) 
Y S S 

The index 7 is an element of the set T = R+ xR2. The factor —■= normalizes 

to 1 the norm of <77(£). The function g-y{t) is centered at the abscissa u and 
its energy is concentrated in a neighborhood of u, whose size is proportional 
to s. Let g(u) be the Fourier transform of g(t). Equation (15) yields 

g^u) = JSg{s{u - 0)c-'<w-«)". (16) 

Since \g{ui)\ is even, |^7(w)| is centered at the frequency u = f. Its energy 
is concentrated in a neighborhood of £, whose size is proportional to -. The 
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dictionary of time-frequency atoms V = {«^(OKer is a very redundant 
set of functions in L2 (R) that includes window Fourier frames and wavelet 
frames. 

A matching pursuit chooses the time-frequency atoms of V which are 
"best" adapted to expand /. Since a time-frequency atom dictionary is com- 
plete, Theorem 1 proves that 

+00 

/=E   <fin/,$7n>57n, (17) 
71=0 

where jn = (sn, un, fn) and 

S,nW = 4-ff(^-^KK (18) 

Numerical study have been performed on speech and audio signals [1], [4]. 

4    Chaotic Attractor and Noise Removal 

The asymptotic convergence of a matching pursuit has further been studied 
by analyzing the behavior of the normalized residue 

hnr _   Rnf R f-WJ\\' 
The non-linear map defined by Rn+1f = M{Rn f) exhibits chaotic proper- 
ties. Experimental data suggest that the normalized residues of a normalized 
pursuit converge to a chaotic attractor. In low-dimensional spaces, Geoff 
Davis [3] proved that M is topologically equivalent to a left-shift map opera- 
tor, whose chaotic properties are entirely known. In high dimensional spaces, 
the analysis was performed for a particular dictionary of Diracs and complex 
exponentials. Numerically, one can observe that the first few iterations of 
the pursuit extracts the components of / which are strongly correlated with 
dictionary vectors, which we call coherent part. The remaining residue does 
not correlate strongly to any dictionary vectors and its properties depend 
upon the attractor of the chaotic map. We call it a "dictionary noise" For 
dictionaries of time-frequency atoms these residues converge to realizations 
of white noises [3]. 

By tracking the convergence of the residue to the dictionary noise attrac- 
tor, we can isolate the coherent signal components that are well approximated 
by few dictionary vectors. Applications to noise removal from speech signals 
have been studied by Geoff Davis [3]. 
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5    Image Pursuit 

For image processing, we must select a dictionary that can characterize the 
local scale and orientation of the image variations. For this purpose, Francois 
Bergeaud [7] introduced a dictionary composed of several two-dimensional 
wavelets that have specific orientation selectivity. These wavelets are all de- 
rived from a two-dimensional window g(x, y) that is modulated at a fixed 
frequency ui0 along several directions specified by an angle 9 in the (x,y) 
plane 

gg(t) = g(x,y)exp[i(xcos9 + ysin8)]. 

These oriented wavelets are then scaled by s and translated to define a whole 
family of wavelets {<7-y}7er with: 

g*,(x,y) = -g8{  
s s 

u  y — v 
(19) 

The multi-parameters index 7 = (8, s, u, v) carries the orientation, scale and 
position of the corresponding wavelet. 

In numerical computations, the scale is restricted {2J}jez and the an- 
gles are discretized. This wavelet dictionary used in the numerical exam- 
ples include 8 orientations. The matching pursuit algorithm applied to this 
wavelet dictionary selects iteratively the wavelets, whose scales, orientations 
and positions best match the local image variations. Applications to texture 
discrimination and noise removal have been developed [7]. 

6    Fast Numerical Computations 

At a first glance, a matching pursuit seems to require a hopeless amount 
of computations. These computations can however be considerably reduced 
with an efficient algorithm that prunes the dictionary with local maxima [l], 
[7]. For / G H, we call a local maxima in the parameter space T an index 70 
such that for all 7 in a neighborhood of 70 in T 

< f, 9~i > I < I < /, 5-70 > (20) 

For example, in a Gabor dictionary of one-dimensional time frequency 
atoms, the local maxima are computed for fixed scale. For each scale s, the 
local maxima are defined as indexes 70 = (s, uo,fo) such that (20) is valid for 
any 7 = (s, u,£) with (u,f) in a neighborhood of (UQ,£O)- 
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At the step 1 of the algorithm we prune the dictionary with a local maxima 
selection. All inner products {< f,g^ >}7gr are computed. We choose a 
threshold e and select only the local maxima that are large enough 

The matching pursuit is then computed by induction as follow. 
Suppose that the first n vectors {g~/k}o<k<n have been selected. We denote 

by Tn the indexes 7 such that | < /, g~, > | is a local maxima and | < 
Rnf,9-y0 > I ^ ell/ll- We find gln which correlates Rnf at best in this 
reduced dictionary 

\<Rnf,g~tn>\= sup \<Rnf,gy>\. 
-y€r„ 

We compute the inner product of the new residue Rn+1f with all {<7-y}7€r„ 
with an updating formula derived from equation (5) 

< Rn+1f, 9l >=< Rnf, 9l>-< Rnf, gln ><gln,g-y> .       (21) 

Since we previously stored < Rnf,g~, > and < Rnf,g-yn >, this update is 
obtained in 0(1) operations if the value < <77n,57 > can be retrieved in 0(1) 
operations. This is the case for the Gabor dictionary of one-dimensional time- 
frequency atoms and the dictionary of two-dimensional wavelets. The vectors 
in these dictionaries have a sparse interaction which means that for most 
7 € rn, we have < g<yn,g-, >= 0. There are thus few indexes 7 for which the 
value of < Rnf,g~l > must be updated. The dictionary is further pruned by 
suppressing from Tn all indexes 7 such that | < Rn+lf,g1 > | < e||/||. The 
iteration is then continued on this new index set rn+i. 

If we iterate this procedure, the index Tn is progressively reduced until 
it gets empty for n = m. We then come back to the step 1 and replace / by 
Rmf. The local maxima of < Rmf,g~, > are computed and are thresholded 
with the new value e||i2m/||. The pursuit is then continued on these maxima 
with the iteration previously described, until the index set is again empty for 
n = p. We come back again to step 1 by replacing / by Rpf and continue 
the iterations. A software implementing matching pursuit for time-frequency 
dictionaries is available through anonymous ftp at the address cs.nyu.edu . 
Instructions are in the file README of the directory /pub/wave/software. 
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7 High Resolution Pursuit 

The matching pursuit is a greedy strategy which does not use any "look- 
ahead" for selecting the dictionary vectors. When the features have a support 
that intersect, this can induce a selection of dictionary vector that is not 
optimal. In collaboration with Pfr. Alan Willsky group at MIT, we developed 
a high resolution pursuit algorithm that uses the same greedy strategy but 
which replaces the optimization of and L2(R) correlation by a non-linear 
measure which is more sensitive to the local fit of features [9]. 

The high resolution pursuit algorithm was developed for two types of dic- 
tionaries. We used a dictionary of dilated and translated box spline functions 
to decompose high resolution radar signals. These features are then used for 
classification. We also developed an application to the detection of transitions 
in sounds by using a dictionary of wavepackets [9]. 

8 Estimation of Covariance 

For general non-stationary processes the covariance matrix cannot be esti- 
mated reliably from a few realizations of the process. However, if we can find 
a basis in which the covariance operator is well approximated by a sparse 
matrix, it is possible to reduce substantially the variance by estimating only 
the (essentially) non-zero matrix elements. It is thus necessary to estimate 
from the data the basis in which the covariance operator is well approximated 
by a sparse matrix, as well as the non-zero matrix elements. A best basis 
search algorithm has been introduced to compress the covariance operator. 

Locally stationary processes appear in many physical systems in which the 
mechanisms that produce random fluctuations change slowly in time or space. 
Over short time intervals, such processes can be approximated by a stationary 
one. This is the case for many components of speech signals. We have shown 
that the covariance operator of such processes is nearly diagonalized in an 
appropriate local cosine basis. A best basis algorithm was designed to search 
this best basis and estimate the compressed covariance matrix. 
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